
Generating Statechart Designs From Scenarios

Jon Whittle

Recom / NASA Ames Research
M/S 269-2

Mo�ett Field, CA 94035 USA
+(650) 604-3589

jonathw@ptolemy.arc.nasa.gov

Johann Schumann

Caelum / NASA Ames Research
M/S 269-2

Mo�ett Field, CA 94035 USA
+(650) 604-0941

schumann@ptolemy.arc.nasa.gov

ABSTRACT

This paper presents an algorithm for automatically gen-
erating UML statecharts from a collection of UML se-
quence diagrams. Computer support for this transi-
tion between requirements and design is important for
a successful application of UML's highly iterative, dis-
tributed software development process. There are three
main issues which must be addressed when generating
statecharts from sequence diagrams. Firstly, con
icts
arising from the merging of independently developed se-
quence diagrams must be detected and resolved. Sec-
ondly, di�erent sequence diagrams often contain identi-
cal or similar behaviors. For a true interleaving of the
sequence diagrams, these behaviors must be recognized
and merged. Finally, generated statecharts usually are
only an approximation of the system and thus must be
hand-modi�ed and re�ned by designers. As such, the
generated artifact should be highly structured and read-
able. In terms of statecharts, this corresponds to the
introduction of hierarchy. Our algorithm successfully
tackles all three of these aspects and will be illustrated
in this paper with a well-known ATM example.

Keywords

UML, Scenarios, Automated Software Engineering

1 INTRODUCTION

The Uni�ed Modeling Language (UML) [17] provides a
standardized collection of notations for describing arti-
facts in a software-intensive system. It supports modern
complex software development, whereby requirements
are expressed in one notation, e.g., sequence diagrams;
the design is then described in other notations, e.g.,
class diagrams and statecharts; �nally code is produced
using the earlier notations as a guide. This approach
allows di�erent stakeholders to develop models indepen-
dently and encourages rapid prototyping.

Each UML notation represents a particular aspect of a
software system from a particular viewpoint. However,
there exists a good deal of overlap between many no-
tations. This overlap can be exploited, in the form of
automatic translations between notations, to reduce the
time spent in design and to help maintain consistency
between the models of di�erent developers.

Currently, commercial tools such as iLogix's Rhapsody
[15] and Rational's Rose [14] do not adequately bridge
the gaps between UML notations. The generation of
C++ code is now commonplace, but the generation of
UML models themselves has not been adequately ad-
dressed. Some model translations can be trivially de-
�ned because the models represent the same information
in slightly di�erent ways. One such example is convert-
ing between sequence diagrams and collaboration dia-
grams. However, other translations are inherently more
involved, such as translating between requirements and
actual system designs.

This paper presents an algorithm which supports the
design process by generating statechart designs auto-
matically from scenarios. A scenario is a trace of an
individual execution of a (software) artifact [19]. Sce-
narios are widely used as a (pre-)requirements technique
since they describe concrete interactions and are there-
fore easier for customers and domain experts to use than
an abstract model. In what follows, scenarios will be
expressed as UML sequence diagrams and the design
model will consist of a class diagram and UML state-
charts.

Since each scenario is usually written in isolation, bring-
ing many scenarios together will result in inconsistencies
which have to be detected and resolved1. UML sequence
diagrams alone do not contain enough semantic informa-
tion to enable the automatic detection of con
icts, but
this information can be obtained by allowing the user to
express constraints on the diagrams. UML provides a
convenient notation for giving such constraints, the Ob-
ject Constraint Language [17] (OCL), which is a side-
e�ect free speci�cation language. The OCL constraints

1This is similar to the feature interactions problem of the
telecommunications industry [11].

amount to a very simple domain theory. Domain theo-
ries are under-used in software engineering because the
e�ort required to develop a complete and consistent do-
main theory usually outweighs the gains. In our case,
we do not insist on a complete domain theory, but re-
quire only a theory expressing instantiations of global
variables that can easily be provided by a software en-
gineer. In addition, our approach allows for revisions of
the domain theory based on con
icts discovered during
statechart generation. This use of a domain theory is a
novel one, as traditionally domain theories are consid-
ered absolute.

The addition of semantic information also allows a jus-
ti�ed merging of multiple scenarios. Di�erent scenarios
will often contain identical or similar behaviors, and the
use of a domain theory allows us to merge these scenar-
ios in a way such that the behavior intended by the user
is preserved.

Since scenarios only give a partial description of a sys-
tem, we expect the use of this algorithm to be similar
to that of a code generator | i.e., the algorithm pro-
duces a skeleton design which the user then has to mod-
ify/complete. Since the user needs to modify the gen-
erated statecharts, they must be readable. This means
that the statecharts must include sensible use of hier-
archy and orthogonality. We have devised a number of
ways of introducing hierarchy into the generated state-
charts. We believe that the use of hierarchy is crucial
to the success of design generation tools.

Section 2 introduces the relevant parts of the UML along
with an example that will be referred to throughout the
paper. Section 3 shows how scenarios can be annotated
with semantic information and Section 4 presents an
algorithm that uses this semantic information to gener-
ate statechart designs. Section 5 discusses related ap-
proaches and we conclude in Section 6.

2 UML NOTATION AND EXAMPLE

Throughout this paper, we will use an ongoing example
to illustrate our techniques. The well-known ATM ex-
ample (see e.g. [13]) is rather small, yet complex enough
to illustrate the main issues. The example describes typ-
ical scenarios for user interaction with an ATM machine
(e.g., inserting or removing a card, entering a password),
and interaction between the ATM, a consortium and the
bank for account validation.

Class Diagram

A class diagram is a notation for modeling the static
structure of a system. It describes the classes in a sys-
tem and the relationships between them. Figure 1 shows
an example of a class diagram for our ATM example. In
an object-oriented fashion, the main class (here \ATM
toplevel") is broken down into sub-classes. The aggre-
gation relation (3) shows when one class is part of

another one. The generalization relation (�) shows
when one class is an instance of another. For further
details, see [17].

Figure 1: A Class Diagram for the ATM.

Figure 2: Example of a Statechart.

Statecharts

Statecharts, introduced originally by D. Harel [6], are
�nite state machines extended with hierarchy and or-
thogonality (parallelism), allowing a complex system to
be expressed in a more compact and elegant way. Fig-
ure 2 shows a simple example of a statechart2. Nodes
can either be simple nodes, or composite nodes which
themselves contain other statecharts. The initial node
in a statechart is marked by �. Transitions between
states have labels of the form e[c]=a. If event e occurs
and guard c holds, then the transition may be selected
to �re which results in action a being taken and a state
change occurring. This behavior is extended in a natu-
ral way to handle composite nodes. In Figure 2, if the
system is in state B when the transition e[c]=a �res,

2All class-diagrams and statecharts in this paper have been
drawn using the Argo/UML tool [2].

User ATM Consortium Bank

Display main screen
Insert card

Request password

Enter password
Verify account

Verify card with bank

Bad bank account
Bad accountBad account message

Print receipt

Eject card

Request take card

Take card

Display main screen

Figure 3: Interaction with an ATM (SD1).

User ATM Consortium Bank

Display main screen
Insert card

Request password

Enter password
Verify account

Verify card with bank

Take card

Display main screen

Bad bank password
Bad passwordRequest password

Cancel

Canceled message

Eject card

Figure 4: Interaction with an ATM (SD2).

then the system changes state to A1. If the system is
in any of the states A1; A2; A3 when transition f [d]=b
�res, then it will change state to C.

By using composite nodes, hierarchy (or depth) can be
introduced. This not only decreases the number of indi-
vidual nodes substantially, but also enhances readabil-
ity and maintainability of a statechart. For details on
statecharts see e.g., [6, 17], for their semantics cf. [7].

Sequence Diagrams

The basis for our approach are scenarios which describe
concrete examples of the system's intended behavior.
Scenarios can be expressed in UML as sequence dia-
grams. A sequence diagram (SD) shows the interaction
between objects of a system over time. The SD in Fig-
ure 3 is an example for interactions between the objects
\User", \ATM", \Consortium" and \Bank". The ver-
tical lines represent the life-line (or time-line) for the
given object, de�ning the object's life during the inter-
action. Messages (like \Insert card") are exchanged be-
tween the objects. In this paper, we will focus on basic
SDs; for further details and extensions (e.g., conditional
messages, or iteration) cf. [17].

3 ADDING SEMANTIC INFORMATION

The simplicity of sequence diagrams makes them suit-
able for expressing requirements as they can be easily
understood by customers, requirements engineers and
software developers alike. Unfortunately, the lack of se-
mantic content in sequence diagrams makes them am-
biguous and therefore di�cult to interpret. For exam-
ple, suppose there exists an additional sequence dia-
gram, SD0, identical to SD1 in Figure 3 except that
there are two \Insert card" messages adjacent to each

other. There are three possible ways to interpret the
conjunction of the two SDs | either one or two cards
may be inserted; exactly one card must be inserted so
SD0 is incorrect; or, exactly two cards must be inserted
so SD1 is incorrect. In current practice, ambiguities are
often resolved by examining the informal documentation
but, in some cases, ambiguities may go undetected lead-
ing to costly software errors. In the case of computer
generation of designs, the documentation is usually too
informal for the automatic resolution of con
icts. There
are two extreme ways to overcome this problem. First,
insist that the user provides a complete, formal domain
theory providing semantic information about the mes-
sages. Second, assume no additional semantic informa-
tion but interpret scenarios based on some heuristic.
Neither of these is su�cient, however. The provision
of a complete domain theory is overly burdensome and
an algorithm with no semantic information ultimately
produces incorrect results.

We make a compromise, whereby messages in a sequence
diagram may be annotated with a pre/post-condition
style speci�cation expressed in OCL. Note that this is
only a small additional burden on the user, since the
amount of information required by our algorithm for a
successful merging of SDs is actually very small. The
speci�cations should include the declaration of global
state variables, where a state variable represents some
important aspect of the system, e.g., whether or not
the user has inserted his card into the ATM. Pre- and
post-conditions should then include references to these
variables. Note that not every message needs to be given
a speci�cation, although, clearly, the more semantic in-
formation that is supplied, the better the quality of the

cardIn, cardHalfway, passwdGiven : Boolean
card : Card, passwd : Sequence

Insert card(c : Card)
pre : cardIn = false
post: cardIn = true and card = c

Enter password(p : Sequence)
pre : passwdGiven = false

and p->forAll(p->includes(d)=>digit(d))
post: passwdGiven = true and passwd = p

Take card()
pre : cardHalfway = true
post: cardHalfway = false and cardIn = false

Display main screen()
pre : cardIn = false and cardHalfway = false
post:

Request password()
pre : passwdGiven = false
post:

Eject card()
pre : cardIn = true
post: cardIn = false and cardHalfway = true

and card = null and passwd = null

Request take card()
pre : cardHalfway = true
post:

Canceled message()
pre : cardIn = true
post:

Figure 5: Domain Knowledge for the ATM class.

con
ict detection. Currently, our algorithm only ex-
ploits constraints of the form var = value, but there
may be something to be gained from reasoning about
other constraints using an automated theorem prover.

As well as being used for con
ict detection, the OCL
constraints can be used to identify identical states in
di�erent sequence diagrams which allow these diagrams
to be merged. The constraints also allow an automatic
partitioning of the generated statecharts into hierarchi-
cal super-nodes (cf. Section 4).

Figure 5 gives speci�cations for selected messages in our
ATM example. The state variables, in the form of a
state vector, are used to characterize states in the gen-
erated statechart. The state vector is a vector of values
of the state variables. In our example, the state vector
has the form:

< cardIn̂ , cardHalfwaŷ , passwdGiven̂ , card̂ , passwd̂ >

where var̂ 2 Dom(var) [f?g, and ? represents an un-
known value. The notion of state vector is crucial to
our algorithm.

4 GENERATING STATECHARTS

Single Sequence Diagrams

We shall �rst consider how individual SDs can be con-
verted into statecharts. This process starts by detecting

con
icts between the SD and the domain theory (and
hence, other SDs). Note that there are two kinds of con-
straints on a SD: constraints on the state vector given
by an OCL speci�cation, and constraints on the order-
ing of messages given by the SD itself. Con
icts between
these constraints mean that either the scenario does not
follow the user's intended semantics or the domain the-
ory is incorrect. The decision as to which holds must be
taken by the user and appropriate modi�cations must
be made. This enables both the domain theory and the
SDs to be re�ned during statechart generation.

Let a sequence diagram be represented as follows:

s0
m1�! s00; s1

m2�! : : :
mr�1

�! s0r�1; sr
mr�! s0r (1)

where themi are messages between objects and si, s
0

i are
the state vectors immediately before and after message
mi is executed. The source and destination objects of
message mi are denoted by msource

i and mdest
i , respec-

tively. Si will be used as a notational convenience to
denote either si or s

0

i. Si[j] is the jth element of the
the vector Si. vj will denote the name of the variable
associated with position j in the state vector.

The initial state vectors are obtained directly from the
message speci�cations: if mi has a precondition vj = y,
then let si[j] := y, and if mi has a postcondition vj = y,
let s0i[j] := y. Otherwise, si[j] = s0i[j] := ?.

Since each message is speci�ed independently, the initial
state vectors will contain a lot of unknown values. Most
(but not all) of these can be given a value in one of two
ways.

� Uni�cation: two state vectors, Si and Sj (i 6= j),
are considered the same if they are uni�able, i.e.,
there exists a variable assignment � such that
�(Si) = �(Sj). This amounts to the detection of
loops within a SD.

� The frame axiom: for each j, if si[j] = ?, i > 0,
then let si[j] := s0i�1[j] and if s0i[j] = ? then let
s0i[j] := si[j]. This assumes, of course, that there
are no hidden side-e�ects between messages.

These two techniques extend the state vectors by prop-
agating variable values throughout the SD. This allows
us to detect con
icts between state vectors | a con
ict
is detected if the state vector immediately following a
message and the state vector immediately preceding the
next message di�er (if they are uni�able they will al-
ready have been uni�ed). Any reported con
icts must
be resolved by the user and the algorithm is started
again. Figure 6 shows how these techniques �t together.

Example. Figure 7 shows SD1 from Figure 3 after
the state vectors have been extended by uni�cation and
the frame axiom. Our procedure detects a con
ict with

Input. A SD annotated with state vectors
Output. A SD with extended annotations

for each state vector Si do
if there is some j and some uni�er �

with �(Si) = �(Sj) then
unify Si and Sj ;
propagate instantiations with frame axiom;

if there is some k; l with s0k(l) 6= sk+1(l) then
Report Con
ict;
break;

done

Figure 6: Extending the state vector annotations.

the domain theory. This arises because state vectors
SV1 and SV2 are uni�ed (the �gure shows the instan-
tiations of the vectors after uni�cation). This corre-
sponds to the fact that the ATM returns to its initial
state after \Take card" is executed. The state vectors
tell us that there is a potential loop at this point, which
will be created when the SD is translated into a stat-
echart (see Figure 8). The e�ect of this loop is that
there exists an execution path such that the variable
passwdGiven is set to true when \Request password"
is encountered (the value of passwdGiven is the third el-
ement in the vector). However, the domain theory tells
us that passwdGiven must be false as a pre-condition
of \Request password". Hence, there is a con
ict, which
represents the fact that the developer did not account
for the loop possibility when designing the domain the-
ory. The user must now decide on a resolution of this
con
ict | either he can tell the system that the loop is
not possible, in which case the uni�er that detected the
loop is discarded; or he modi�es the sequence diagram;
or he modi�es the domain theory. The action taken in
this case is that the domain theory is updated by giving
\Eject card" the additional postcondition passwdGiven

= false. This extra postcondition resets the value of
the variable when the ATM user removes his card.

Translation into Finite State Machines
Once con
icts have been resolved, we are ready to gen-
erate a statechart. Our strategy is to generate a number
of
at statecharts (in fact, �nite state machines (FSMs))
for each individual SD, one for each object in the SD.
Each FSM describes the behavior of the class to which
the corresponding object belongs. Messages directed to-
wards a particular object, O, are considered events in
the FSM for O. Messages directed away from O are
considered actions. A loop is detected if the state vec-
tor immediately after the current message has been ex-
ecuted is the same as an existing state vector and if
this message is state-changing, i.e., si 6= s0i. Note that

<t,f,t,c,p>

<t,f,t,c,p>
<f,t,t,null,null>

<f,t,t,null,null>

<f,t,t,null,null>

<f,f,t,null,null>

<f,f,t,null,null>

<f,f,t,null,null>

<t,f,f,c,null>

<t,f,f,c,null>

User ATM Consortium Bank

Display main screen
Insert card

Request password

Enter password
Verify account

Verify card with bank

Bad bank account
Bad accountBad account message

Print receipt

Eject card

Request take card

Take card

Display main screen

<t,f,t,c,p>

<t,f,t,c,p>

<t,f,t,c,p><t,f,t,c,p>

<t,f,t,c,p>

<t,f,t,c,p>

<t,f,t,c,p>

<t,f,t,c,p>

<t,f,t,c,p>

SV1

SV2
<f,t,t,null,null>

<f,f,t,null,null>

<f,f,t,null,null>

<f,f,t,null,null>

<t,f,t,c,null>

<t,f,f,c,null>

conflict

Figure 7: Figure 3 with Extended Annotations.

some messages may not have been given a speci�cation,
hence they will not a�ect the state vector. To iden-
tify states based solely on the state vector will result in
incorrect loop detection (e.g., a message with no speci-
�cation will always loop back to its starting state). To
overcome this, loops are only created when the message
changes the state.

Figure 8 shows how a single SD is translated into a FSM
for each object. A FSM, as generated by Figure 8, is
a 6-tuple (N; s0; V; �; L; �) where N is the set of nodes,
s0 2 N is the initial node, V is the set of state vectors,
� : N ! V is a labelling of the nodes with state vectors,
L is the set of transition labels and � � N�L�N is the
transition relation. Transition labels are either events,
denoted hev;mi, or actions, denoted hac;mi, where m
is a sequence of messages. Note that we create a tran-
sition for each event and each action. This produces an
overly large number of states but makes analysis eas-
ier. For presentation to the user, actions and events can
be amalgamated into the same transition in the usual
statechart style. Our implementation also deals with
conditional branches expressed in the sequence diagram
which introduce transition guards into the FSM, but we
omit these here for the sake of clarity3 . The detection of
loops is done in the second if statement in the de�nition
of add.

Multiple Sequence Diagrams

The previous section dealt with a single sequence dia-
gram. The key ideas were how to identify if a SD con-

icts with the domain theory and how to detect loops.
When merging multiple sequence diagrams, one way
would be to convert each SD to FSMs and then take
the union of those FSMs. This is essentially the ap-

3The semantics of conditional messages in UML SDs is unclear.
We follow that presented in [4] where keywords IF, ENDIF, CASE,
ENDCASE are used to partition a SD into conditional branches.

Input. A sequence diagram, S, containing objects
O1; : : : ; Ok and messages m1; : : : ;mr (as in (1)).
Output. A FSM COi

for each object, 1 � i � k.

for i = 1; : : : ; k do
Create a new FSM, COi

, with a single node, n0;i
(the initial node) and current node in COi

:= n0;i;
done

for i = 1; : : : ; r do
add(mi; ac;m

source
i);

add(mi; ev;m
dest
i);

done

where add(mess, type, obj)
curr := current node in Cobj ;
if there is a n 2 NCobj

with hcurr; l; ni 2 �
and l = htype;messi and s0i = �(n) then

current node in Cobj := n;
return

�

if there is a n 2 NCobj
with s0i = �(n)

and mi is state-changing then
add new transition hcurr; htype;messi; ni;
current node in Cobj := n;
return

�

add a new node n and let �(n) := s0i;
add a transition hcurr; htype;messi; ni;
current node in Cobj := n;
return

Figure 8: Translating a sequence diagram into FSMs.

proach taken in [18]. Recall, however, that one of our
main aims is to generate readable statecharts which can
then be further modi�ed by the user. Merely taking the
union of the FSMs would result in a chart with many
independent branches, one for each SD. Our approach
makes an analysis of which nodes in di�erent FSMs can
be identi�ed so that di�erent branches can be merged.
The result is a statechart with fewer nodes correspond-
ing more closely to the statechart that a designer might
produce manually from the SDs.

The idea is that we recognize similar nodes from dif-
ferent FSMs and join them with empty �-transitions.
A standard algorithm from [1] can then be used to re-
move these �-transitions and simultaneously merge sim-
ilar nodes. A key question then is how to recognize
similar nodes. The obvious solution is to de�ne similar-
ity such that two nodes are similar if their state vectors
are the same. However, such a de�nition would produce
an excessive number of similar nodes since some mes-
sages do not change the state vector. The way around
this when merging multiple SDs is to base the notion of
similarity on both the state vectors and the ordering of

messages:

De�nition 1 Two nodes, n1 and n2 in a FSM, are sim-
ilar if they have the same state vector, �(n1) = �(n2),
and they have at least one incoming transition with the
same label, i.e., there exist transitions t1 = hn3; l; n1i
and t2 = hn4; l; n2i for some nodes n3; n4.

The existence of a common incoming transition means
that in both cases, an event has occurred which leaves
the state variables in an identical assignment. Hence,
the de�nition takes into account the ordering of the mes-
sages and the current state.

We illustrate how �-transitions are introduced when con-
sidering the FSMs generated for an object, O. Suppose
we start with sequence diagrams which are translated
into FSMs C1; : : : ; Ck, then we create a new FSM, C,
which includes C1; : : : ; Ck and has �-transitions as fol-
lows:

1. Let C be the union of C1; : : : ; Ck, i.e., NC = [iNCi
,

�C = [i�Ci
etc.

2. Let C have a new initial node n0 and create �-
transitions from n0 to each of the initial nodes of
C1; : : : ; Ck.

3. For each pair of similar nodes, n1 and n2 in NC ,
create �-transitions from n1 to n2 and from n2 to
n1.

The algorithm that we use subsequently is a variant of a
standard algorithm for transforming a non-deterministic
�nite automaton (NFA) into a deterministic �nite au-
tomaton (DFA) [1]. Each state in the DFA is a set
of NFA states which simulates \in parallel" all possi-
ble moves the NFA can make on a given input string.
In order to leverage o� this algorithm, we introduce �-
transitions as above. These �-transitions are removed by
the algorithm resulting in a FSM that has successfully
interleaved a number of SDs by placing similar nodes
into a single state in the output.

Note that the output of the algorithm is only determin-
istic in the sense that there are no �-transitions remain-
ing. It still may be the case, however, that there are
two transitions leaving a state labelled with the same
events but di�erent actions. Hence, our algorithm may
produce non-deterministic statecharts. Note that this is
a good thing, as a designer may wish to leave a design
non-deterministic initially and re�ne it later.

Example. Figure 11 gives the statechart generated au-
tomatically from the SDs in Figures 3, 4, 9 and 10. Our
algorithm, implemented in Java, has actually been ap-
plied to the full ATM example, which consists of eleven

User ATM Consortium Bank

Display main screen
Insert card

Request password

Cancel

Canceled message

Eject card

Request take card

Take card

Display main screen

Figure 9: Interaction with an ATM (SD3).

User ATM Consortium Bank

Display main screen
Insert card

Request password

Enter password
Verify account

Cancel

Canceled message

Eject card

Request take card

Take card

Display main screen

Figure 10: Interaction with an ATM (SD4).

Figure 11: Statechart generated from SD1, SD2, SD3 and SD4.

SDs. Two con
icts were found and a loop was detected
which was not intended, but which was allowed by the
SDs and domain theory. In this way, the algorithm car-
ries out some degree of validation of the input SDs.

Introducing Hierarchy

So far, we have shown how to generate FSMs without
any hierarchy. In practice, however, statechart designs
tend to get very large and so the judicious use of hierar-
chy and orthogonality is crucial to readability and main-
tainability of the designs. In what follows, we consider
how hierarchy can be introduced automatically into the
FSMs generated by our algorithm.

There are several issues which comprise a \well-
designed" statechart (see, for example, [9]). They in-
clude the consolidation of related behavior, the sepa-
ration of unrelated behavior, and the introduction of
meaningful abstractions. We consider three approaches

for introducing hierarchy into the generated FSMs: us-
ing implicit information present in the state vectors, in-
troducing generalizations, and using information explic-
itly given by the user in class diagrams.

Using the State Vector
The set of state variables in our annotated SDs pro-
vides an excellent means for introducing structure into
the generated statechart. State variables usually encode
that the system is in a speci�c mode or state (e.g., if the
card is inserted or not). Thus it is natural to partition
the statechart into subcharts containing all nodes be-
longing to a speci�c mode of the system.

More speci�cally, we recursively partition the set of
nodes according to the di�erent values of the variables in
the state vectors. In general, however, there are many
di�erent ways of partitioning a statechart, not all of
them suited for good readability. Thus, we introduce
additional heuristic constraints on the layout of the stat-

echart. These constraints rule out unreadable partitions
and are controlled by user-given parameters:

1. the maximum depth of hierarchy (too many nested
levels of compound states limit readability);

2. the maximum number of states on a single level;

3. the maximum percentage of inter-level transitions
(transitions between di�erent levels of the hierarchy
limit modularity, but can occasionally be useful);

4. a partial ordering, �, over the state variables, de-
scribing an order in which partitions should be at-
tempted (some state variables may be more \im-
portant" than others and thus should be given pri-
ority). The ordering encapsulates important design
decisions about the way in which the statechart
should be split up.

The process of structuring a given subset S of the nodes
of a generated FSM is shown in Figure 12. Given the
set of variables W of the state vector and the ordering
� , a sequence W 0 is constructed w.r.t. �. Then the
nodes S are partitioned. In case the partition does not
meet the design criteria ((1){(3) above), a warning will
be issued that the given ordering would result in a non-
optimal hierarchy and a new ordering of the variables
is selected. This selection is done until the criteria are
met.

The actual splitting is performed recursively according
to the variable sequenceW 0. Let vj be the top-level vari-
able (minimal inW 0) on which to split. The partition is
made up of m equivalence classes corresponding to each
possible value of vj given in the SDs. For example, for
the boolean variable cardIn we would collect all nodes
where this variable is true or false, respectively. Then
these compound states will be partitioned according to
the remaining variables.

Generalizations
Since SDs often represent concrete instances of a more
general behavior, it is useful to be able to introduce gen-
eralizations into the generated statechart. We present
one example of this here. The input SDs show that the
event \Cancel" can occur in one of two states (see Figure
11). \Cancel" can be generalized, however, such that
it can occur in any state in which cardIn is true and
cardHalfway is false. This suggests the introduction of
hierarchy by partitioning the statechart over the values
of cardIn and cardHalfway, using the ordering cardIn
� cardHalfway. At present, such generalizations are
given explicitly by the user, in the form of expressing
an ordering or invoking a transformation, but it may
be possible to suggest generalizations automatically, for
example, by using machine learning techniques.

Input. A FSM, (N; s0; V; �; L; �), S � N , an ordering
� over the state vector variables, W
Output. A partitioning P of the FSM

W 0 := hv1; :::; vki for vi 2W and vi � vj ; i < j;
P := partition(S;W 0);
while :optimal(P) do

W 0 := select-variable-ordering(W);
P := partition(S;W 0);

done

where partition(S;W 0)
vj := �rst(W 0); // split on �rst var. in W 0

DS(vj) :=
S

s2S

f�(s)[j]g;

m := jDS(vj)j;
for 1 � i � m do

Si := fs 2 Sj�(s)[j] = ith(DS(vj))g;
Pi := partition(Si; rest(W

0));
done

P := hPijPi 6= hi i
where optimal(P)

check P according to our design criteria

Figure 12: Sketch of algorithm for partitioning over the
state vector.

Example. Figure 13 shows the FSM from Figure 11
which has been partitioned according to the ordering
cardIn � cardHalfway, and in which the \Cancel"
message has been generalized (explicitly by the user) as
in the previous paragraph to produce the same behavior
for the source state of `Request password' as for the
other two states in which it is applicable.

Using Class Diagrams
It is important to incorporate other design decisions
made by the developer into the synthesis process.
Within the UML framework, a natural place for higher-
level design decisions are class diagrams. These describe
the types of the objects in the system and the static re-
lationships among them.

A hierarchical structure of a generated statechart can
easily be obtained from the class diagram: the outer-
most superstate (surmounting the entire statechart) cor-
responds to the class node of the corresponding object.
Aggregation results in a grouping of nodes, e.g., in Fig-
ure 1, the ATM statechart will have subcharts physical
device and dialogs. If a class contains several sub-
classes (e.g., card-reader and cash-dispenser are
sub-classes of physical-device in Figure 1), the state-
charts corresponding to the sub-classes are sub-nodes of
the current node. Due to space restrictions, we do not
show the resulting statechart when Figure 1 is struc-
tured according to the class diagram.

Figure 13: Structured statechart for the ATM example.

The �nal way of introducing structure is somewhat
higher-level than the �rst two. Typically, the class di-
agram can be used to obtain a very abstract structure
and the �rst two methods can be used to introduce fur-
ther structure within each subchart generated using the
class diagrams.

5 RELATED WORK

There have been a number of recent attempts at gen-
erating speci�cations from scenarios. Our work stresses
the importance of obtaining a speci�cation which can
be read, understood and modi�ed by a designer. This
is re
ected in the following main ways.

Many approaches make no attempt to interleave di�er-
ent scenarios. [18] gives a learning algorithm for gener-
ating a temporal logic speci�cation from a set of exam-
ples/counterexamples expressed as scenarios. Each sce-
nario gives rise to a temporal logic formula Gi and sce-
nario integration is merely

S
iGi augmented with rules

for identifying longest common pre�xes. In terms of
generating FSMs, this corresponds to having separate
branches in the FSM, one for each scenario. However,
this does not correspond well to what a human designer
would do.

A more e�ective integration of scenarios necessitates
some way of identifying identical states in di�erent sce-
narios. The solution to this in [10] is to ask the user
to explicitly name each state in the FSM generated
from a scenario. Di�erent states are then merged if
they have been given the same name. This approach
requires a good deal of e�ort from the user, however.
The SCED tool [13] generates FSMs from traces using

the Biermann-Krishnaswamy algorithm [3]. This algo-
rithm uses backtracking to identify identical states in
such a way that the �nal output FSM will be determin-
istic. As a result, there is no use of semantic information
about the states and the algorithm ultimately may pro-
duce incorrect results by identifying two states that are
in fact not the same. In addition, designers will often
introduce non-determinism into their designs which will
only be resolved at a later implementation stage. Hence,
the insistence on determinism is overly restrictive.

[12] tackles the problem of integration by requiring that
the user gives an explicit diagram (a high-level Message
Sequence Chart) showing the transitions from one sce-
nario to the next. This merely shows, however, how the
start and end points of di�erent scenarios relate. There
is no way to examine the contents of scenarios to, for ex-
ample, detect interleavings or loops. [5] follows a similar
approach, essentially using an AND/OR tree instead of
a high-level Message Sequence Chart.

The work closest to our own is described in [16] where
timed automata are generated from scenarios. The
user must provide message speci�cations with ADD and
DELETE lists which maintain a set of currently valid
predicates in a STRIPS-like fashion. States are then
identi�ed if the set of valid predicates is the same.

The ability to introduce structure and hierarchy into
the generated FSM is crucial if user modi�cations must
be made. [10] allows the limited introduction of hier-
archy if the structure is explicitly represented in the
scenarios (e.g., concurrent threads expressed in a col-
laboration diagram lead to a statechart node with two
orthogonal subnodes). However, structure beyond that
present in the scenarios must be introduced manually.
Our work extends this approach by introducing hier-
archy where the structure is deduced from other UML
notations, such as a class diagram, or from a domain
theory, where partitioning is made over a state variable.

Most other approaches assume the correctness of the
input scenarios. In practice, the scenarios will contain
ambiguities and inconsistencies. Our algorithm detects
con
icts which may correspond to such ambiguities and
hence can be used as a guide for re�ning the scenarios.
To further extend our consistency checks, we may be
able to leverage o� work done in checking the consis-
tency of SCR requirements speci�cations [8], or work in
the feature interactions community [11].

6 CONCLUSIONS

We have presented an algorithm for generating UML
statecharts from scenarios. These scenarios comprise
parts of the system requirements and are given as se-
quence diagrams. By adding semantic information in
the form of a domain theory we are able to correctly
identify similar states and to detect and report incon-

sistencies. By identifying similar states, our approach
allows the merging of a number of sequence diagrams
into a single statechart. In order to make such an al-
gorithm practical, the generated statecharts must be
readable. To enable this, we introduce structure and
hierarchy into the generated statechart. Information
and guidance for structuring are taken from the domain
theory, a UML class diagram and additional preferences
the user may select. A prototype of this algorithm has
been implemented in Java.

The development of high-quality software requires a rig-
orous enforcement of formal techniques during the entire
lifecycle. UML covers a wide spectrum of diagrams and
notations on various levels of software development and
encourages an iterative life-cycle. For high productivity,
a transition between the di�erent levels has to be made
e�ectively and fast. However, current CASE tools only
support translations from speci�cation to code (e.g.,
generation of C++ code from class diagrams or stat-
echarts). Our approach can be used to close the gap
between the requirements and speci�cation phase.

Since most requirements do not specify the full behav-
ior of the system, the generated SCs are only a skele-
ton which serve as a basis for manual re�nement and
modi�cation. Therefore, our algorithm fully supports
iterative model development. Careful software design
requires that the speci�cation and requirements are al-
ways kept in a consistent state. Manually maintaining
consistency is a tedious and error-prone task. Our algo-
rithm provides the �rst step towards an automated tool
for carrying out such a task. Future plans will augment
our algorithms so that changes made to the generated
statechart can be fed back to the sequence diagrams. In
this way, design modi�cations can be validated on-the-

y by highlighting scenarios that are no longer valid, or
suggesting new scenarios that become possible.

REFERENCES

[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Prin-
ciples, Techniques, and Tools. Addison-Wesley,
1986.

[2] Argo/UML. University of California, Irvine, 1999.
http://www.ics.uci.edu/pub/arch/uml/index.html.

[3] A. Biermann and R. Krishnaswamy. Con-
structing programs from example computations.
IEEE Transactions on Software Engineering, SE-
2(3):141{153, 1976.

[4] T. Gehrke and T. Firley. Generative sequence
diagrams with textual annotations. In For-
male Beschreibungstechniken f�ur verteilte Systeme
(FBT99), pages 65{72, 1999.

[5] M. Glinz. An integrated formal model of scenarios
based on statecharts. In 5th European Software En-
gineering Conference (ESEC), pages 254{271, Sit-
ges, Spain, 1995.

[6] D. Harel. Statecharts: A visual formalism for com-
plex systems. Science of Computer Programming,
8:231{274, 1987.

[7] D. Harel, A. Pnueli, J. Schmidt, and R. Sherman.
On the formal semantics of statecharts. In Proc.
2nd LICS, pages 54{64. Springer, 1987.

[8] C. Heitmeyer, R. Je�ords, and B. Labaw. Auto-
mated consistency checking of requirements spec-
i�cations. ACM Transactions on Software Engi-
neering and Methodology, 5(3):231{261, 1996.

[9] I. Horrocks. Constructing the User Interface with
Statecharts. Addison-Wesley, 1999.

[10] I. Khriss, M. Elkoutbi, and R. Keller. Automat-
ing the synthesis of UML statechart diagrams from
multiple collaboration diagrams. In UML98: Be-
yond the Notation, pages 132{147. Springer, 1999.

[11] K. Kimbler. Feature Interactions in Telecommuni-
cations and Software Systems V. IOS Press, 1998.

[12] S. Leue, L. Mehrmann, and M. Rezai. Synthe-
sizing software architecture descriptions from Mes-
sage Sequence Chart speci�cations. In Automated
Software Engineering, pages 192{195, Honolulu,
Hawaii, 1998.

[13] T. M�annist�o, T. Syst�a, and J. Tuomi. SCED re-
port and user manual. Report A-1994-5, Dept of
Computer Science, University of Tampere, 1994.

[14] Rational Rose. Rational Software Corporation, Cu-
pertino, CA, 1999.

[15] Rhapsody. I-Logix Inc., Andover, MA, 1999.

[16] S. Som�e and R. Dssouli. From scenarios to timed
automata: building speci�cations from users re-
quirements. In Asia Paci�c Software Engineering
Conference, pages 48{57, 1995.

[17] Uni�ed Modeling Language Speci�cation, Version
1.3, 1999. Available from Rational Software Cor-
poration, Cupertino, CA.

[18] A. van Lamsweerde. Inferring declarative re-
quirements speci�cations from operational scenar-
ios. IEEE Transactions on Software Engineering,
24(12):1089{1114, 1998.

[19] K. Weidenhaupt, K. Pohl, M. Jarke, and
P. Haumer. Scenarios in system development: Cur-
rent practice. IEEE Software, pages 34{45, 1998.

